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Abstract

Realistic rendering of participating media like clouds requires multiple anisotropic light scat-
tering. This paper presents a propagation approximation for light scattered intoM direction bins,
which reduces the “ray effect” problem in the traditional “discrete ordinates” method. For a regu-
lar grid volume ofn3 elements, it takes O(M n3 log n + M2 n3) time and O(M n3 + M2) space.
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1. Introduction

To render realistic images of clouds, one must take into account absorption and multiple scat-
tering of incoming illumination. In addition, to produce the bright edges surrounding a cloud
when the sun is behind it, one must account for the anisotropic, mainly forward, scattering of light
from the water droplets.

In 1984, Jim Kajiya and Brian Von Herzen [Kaj84] proposed two methods for rendering
clouds. The first was the two-pass “slab” method, which accounted only for single scattering. The
first pass deposited flux from the light source into the cloud voxels one horizontal layer at a time,
taking into account the attenuation by the opacity in each layer. The second pass gathered the scat-
tered flux along each viewing ray, taking into account the attenuation between the scattering event
and the viewpoint. Voss [Voss83] used a similar method to produce fractal clouds in terrain
scenes. Nishita, Miyakawa, and Nakamae [Nish87] have considered anisotropic single scattering
in fog, and Inakage [Inak89] has included cases where the density and phase function of the scat-
tering material varies from point to point. Kanedaet al. [Kan90] also simulate anisotropic scatter-
ing in clouds and fog, including one case of double scattering: first Raleigh and Mie scattering to
determine a fixed sky illumination, and then one more scattering of this illumination within a fog.
Related work was also done by [Blas93].



Kajiya’s second method was an application of the multiple scattering ideas of Chandrasekhar
[Cha50], which use spherical harmonics to expand, at each point, the light intensity as a function
of direction. The scattering phase function is also expanded in spherical harmonics, resulting in a
set of coupled partial differential equations for the spherical harmonic coefficients of intensity as
functions of the spatial coordinates. Kajiya attempted to solve these equations for the case of iso-
tropic scattering, but it is unclear whether he succeeded, since all the pictures in [Kaj84] were pro-
duced by the simpler “slab” method.

The transport equations Kajiya used, described in the next section, have a long history in
radiation heat transfer in mechanical engineering, and in particle transport in nuclear engineering.
Siegel and Howell [Sie92] give a good summary of solution techniques. Holly Rushmeier
[Rush87, Rush88] applied two of these solution techniques to computer rendering ofparticipating
(i.e. absorbing, emitting, and scattering) media. One was the Monte Carlo method, where a ran-
dom collection of photons or flux packets are traced through the volume, undergoing random scat-
tering and absorption. This method can accurately model all the physics of scattering, but may
take an impractical number of random trials to converge to a useful solution.

The other was thezonal method for isotropic scattering only, which divides the volume into a
number offinite elements which are assumed to have constant radiosity. This requires the calcula-
tion of aform factor between every pair of elements. In a cube ofN = n3 elements, there will be
N2 = n6 such pairs of elements. In theGalerkin finite element scheme, each form factor involves a
double integral over points in both elements, as well as along the path between the two points,
giving a total of 7 integration variables. Rushmeier approximates this by an inverse square factor
and a 1-D integral of opacity along the path connecting the element centers. If each of the O(n)
intervening elements has different scattering properties, this 1-D integral takes time O(n). Using
an iterative method for solving the resulting matrix equation which converges in O(1) iterations,
the total computational cost is O(n7). This cost can be reduced somewhat by grouping adjacent
elements into larger interaction pairs, in the style of Hanrahan, Salzman, and Aupperle [Hanr91],
as was done by Bhata [Bhat93]. Rushmeier [Rush88] also considers anisotropic scattering, but
only in the single scattering case.

Zhiquiang Tan [Tan89] applied the ideas of finite element analysis to the solution for the
spherical harmonic coefficients in the case of multiple anisotropic scattering. If there areM terms
in the expansion, this results in a matrix of sizeM2N2. Tan uses thepoint allocation (or point col-
location) method, which allows the representation of non-constant basis functions. He points out
that this requires integrals over only one 3-D position, reducing the number of integration vari-
ables by 3. This simplification has been misinterpreted by Siegel and Howell [Sie92], who incor-
rectly claimed that the method is O(N). Bhata [Bhat92] has applied this method to computer
rendering, but could deal with only a small number of voxels, due to the O(n7 + M2n6) cost.

Another approach is to allocate the radiosity leaving each volume element into a collection of
M direction bins of constant intensity. Assuming the interaction between two elements involves
only one direction bin for flux transit (reasonable only for distant pairs of elements), this reduces
the number of non-zero matrix elements toMN2, and the cost to compute them to O(n7 + Mn6).



Sparse matrix solution methods are then available, as in Immelet al. [Imm86].

In thediscrete ordinates method in radiation transfer, [Sie92, Chan50], theM direction bins
are represented byM discrete directions, chosen to give optimal Gaussian quadrature in the inte-
grals over a solid angle. Lathrop [Lath68] points out that this process produces ray effects,
because it is equivalent to shooting the energy from an element in narrow beams along the dis-
crete directions, missing the regions between them. He presents modifications to avoid these ray
effects, but the resulting equations are mathematically equivalent to the ones mentioned above for
the spherical harmonic coefficients. This implies thatM properly distributed direction bins specify
the directional intensity distribution to the same detail asM spherical harmonic coefficients.

The current paper presents an approximation to the discrete ordinates method, which reduces
the ray effect by shooting radiosity into the whole solid angle bin, instead of in a discrete repre-
sentative direction. As a shooting method, it is similar to the progressive radiosity method of
Cohenet al. [Coh87], and can be shown to converge for albedo less than one. (See [Gort93] and
section 6 below.) Patmore [Patm93] has used a discrete ordinates shooting algorithm (subject to
ray effects) for a multiple-scattering rendering of clouds, and his paper inspired the current one.
Langeret al. [Lang93] have implemented the discrete ordinates method on a massively parallel
SIMD machine, and included surface reflections. (See section 10 below.)

My chief enhancement is to spread the shot radiosity throughout the direction bin in an effi-
cient way which handles a whole plane of source elements simultaneously, while reducing the ray
effect. Another enhancement treats multiple scattering within a single receiving element before
the next shooting step. I use O(MN) space to store the total radiosity in each direction bin at each
element, and also the unshot radiosity. The direction-bin-indexed matrix representing the aniso-
tropic scattering function takes an additional O(M2) space. The computation for each pass through
the M shooting directions takes time O(Mn3logn + M2n3) = O(MNlogN + M2N). This large
speedup compared to the other methods discussed can only be achieved with a regular cubical
grid. Since it makes essential use of the homogeneity of the grid, my method will not work on
more general finite element meshes.

2. Transport Equations

In thermal radiation heat transport, a participating medium which absorbs radiation heats up,
and re-emits “black body” radiation isotropically. This effect is usually not important in render-
ing, and I will neglect it below for simplicity, and deal only with absorption and scattering. More
complete discussions are available from [Sie92] and [Rush88].

Let I(x,ω) be the intensity at positionx in directionω, and letkt(x) extinction coefficient of
the participating medium. This is the total opacity (absorption plus scattering) per unit length so
kt(x) I(x,ω) ds is the intensity removed along an infinitesimal ray segmentds at x. Let thealbedo,
a, be the fraction of this removed intensity scattered in other directions, and let thephase function,
f (ω, ω′), be the directional distribution function for this scattered intensity, so that
is the fraction of the scattered intensity from directionω′ that ends up in solid angleB. Then

f ω ω′,( ) dωB∫



is the intensity scattered into the directionω along the ray segmentds from other directionsω′ in
the 4π unit sphere. (This is thesource function[Sie92] in the absence of volume emission.) The
integro-differential equation forI(x,ω) is thus

.

Using an integrating factor (see [Sie92], [Rush88], or [Will92]), this can be integrated along a
pathx′(s) = x - sω, from x = x′(0) tox0 = x′(s0) at the edge of the medium, to give the integral form

. (1)

Now assume that the region under study is divided into a collection of cubical volume ele-
ments Vk, which I also call cells, voxels, or, in 2-D, pixels. Assume that the unit sphere is divided
into a number of direction binsBl, and thatI(x,ω) is constant forx in Vk andω in Bl. In the imple-
mentation, these constant values are represented by a matrixthrough[k][l] , which stores the
intensity multiplied by the solid angle of binBl, size[l] . I assume that the extinction coeffi-
cientkt is constant in each elementVk, and stored in an arraykt[k] . The input values forkt[k]
are produced by a cloud modeler, described briefly later. I assume that the albedoa is constant
everywhere, to avoid creating an extra array. Let x lie in cell Vi, andω lie in angle binBj. Then
with these assumptions, we can integrate equation (1) overBj to get

(2)

wheren(s) is the index of the volume element containingx′(s), andl(ω) is the index of the angle
bin containingω. Suppose, for simplicity, that all rays fromx to cell Vl lie in angle binj. (The
algorithm described in the following sections takes special account of interactions involving two
or more bins.) Geometric arguments (see [Rush88]) show that

(3)
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wherer is the distance between the centers of cellsj andk. Thus the multiplier giving the contri-
bution ofthrough[k][l]  to the last term in equation (2) is the “form factor”

. (4)

I precalculated by Simpson’s rule integration theM × M matrix version of the phase function:

bintobin[l][j] =

giving the fraction of the flux from binl  directions which scatters into binj . Replacing the factor

 in equation (4) by its average value , we get

. (5)

In the implementation, I take the unit of length to be the side of a cubic cellVk, so that the factor
Volume(Vk) drops out. Note that this effects the extinction coefficientskt[n] , whose units are
inverse length.

Using these form factors, one can write the usual system of linear equations for the unknown
fluxesthrough[k][l] . I have developed an approximate solution method which accumulates
opacity on the fly, as the flux is propagated in a shooting procedure. As in progressive radiosity
for surface illumination [Coh88], I use an auxiliary arrayunshot[k][l]  of sizeMN = Mn3, to
store the flux waiting to be propagated, and need not store theM2N2 = M2n6 form factors.The dif-
ficult part in evaluating equation (5) is in computing  by integrating
along a straight line joining the pixel centers. My method approximates each such term as a
weighted sum of similar terms, obtained by integrating over piecewise linear paths that lie near
the straight line. (See figure 4.) This permits sharing of calculations to compute the effect of the
M2N2 form factors in time O(MN logN + M2N).

For my test images, I used the Henyey-Greenstein phase function [Heny40]

wherex is the dot product of the two unit direction vectorsω andω′, andg is an adjustable param-
eter between -1 and 1, which is positive for forward scattering, negative for backwards scattering,
and 0 for isotropic scattering. For an appropriate choice ofg, this is a good approximation to the
exact Mie scattering [Mie09] from spherical water droplets. Except for the first bounce from the
light source, and the last bounce to the viewpoint, which use one exact direction each, all interme-
diate bounces are via the arraybintobin , so any phase function can be used efficiently.
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3. Simultaneous Shooting

Consider a unit cube of un-normalized direction vectors, with each face divided into 2m×2m
equal bins, giving a total ofM = 24m2 direction bins. The previous section assumed that the flux
through[k][l]  is uniformly distributed in the direction binBl, so that the intensity is constant
for any direction inside the bin. From now on, I assume that the flux within a single bin is propor-
tional to surface area on the unit direction cube. This assumption is necessary for the efficient
method, described next, for propagating the flux incrementally from a cell to its close neighbors.
It introduces some error in the light distribution, but the error decreases with decreasing bin size.

For simplicity, I will first discuss the method for the 2-D,m = 1 case shown in figure 1. There
areM = 8m = 8 direction bins. I will first describe a simple scheme for propagating the flux which
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Figure 1. Direction bins and binomial weight distribution.



gives a binomial distribution, and then show how to modify it to give a uniform distribution. Con-
sider the bin between 270˚ and 315̊ (bin 6 counting from 0), and suppose the pixel in the center of
the square has a unit flux leaving within this bin. Approximately half of this flux enters the pixel
below, and half enters the one diagonally below and to the right, so these two pixels are marked in
figure 1 with the weights 1/2. If each of these pixels distributes its flux in the same (1/2, 1/2)
scheme to the row below, the flux in that row would be 1/4, 1/2, 1/4, as shown. In the third row
below the shooting pixel, the pattern is 1/8, 3/8, 3/8, 1/8. In general, at pixel (i, n), theith pixel in
thenth row below the shooting pixel at (0, 0), the weight is , giving a binomial distribution.
The binomial coefficient  counts the number ofn-step paths from (0, 0) to (i, n),
obtained by taking anyi of the steps in a diagonal direction, and the rest directly downwards.

This binomial (1/2, 1/2) scheme distributes the flux across the bin, but not in the uniform way
desired. The desired distribution is shown in figure 2, with the pixels in row 3 marked with the
weights 1/2, 1, 1, and 1/2. The outer pixels are counted half in this bin and half in adjacent bins.

The sum of these weights is 3, so they must be normalized by dividing by 3 to give the portion of
the bin’s flux reaching each pixel. To propagate this weight pattern to the next row below, first add
1/2 to each of the outer two pixels, to get a pattern of all 1’s. Then add each of these 1’s, half to the
pixel below, and half to the pixel below and to the right. The result is the desired pattern 1/2, 1, 1,
1, 1/2 in the fourth row.

This pattern of weights, when normalized, shows the proportion of the shot flux reaching a
receiving pixel in the absence of intervening opacity. To account for opacity, each value is multi-
plied by the transparency at the current pixel, before propagating by the (1/2, 1/2) scheme, so that
the opacity is accumulated along the propagation path. The added adjustment to the left most

1

2n
n
i 

 

n
i 

  n!
i! n i−( ) !

=

bin 6

1

1/2 1/2

1/2

1/2 1 1 1/2

Figure 2. Bin 6 from figure 1, with desired weight distribution.
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pixel is similarly attenuated by the opacities in the column above it, and the adjustment to the
right most pixel, by the opacities along a 45° diagonal. The iterative process actually starts with
the outgoing flux to be shot in a direction bin, instead of the unit flux discussed above. In rows, it
builds a pattern ofs+1 appropriately weighted and attenuated values, which are divided bys and
added into thereceive  array at that row.

The arithmetic involved in this iteration is independent of the horizontal displacement
between the shooting and the receiving pixel, so it can be done simultaneously for each pixel in a
horizontal row, as indicated by the code fragment in figure 3.

/* Initialize with unshot radiosity from row i0. */
for (j = 0; j < columns; ++j) {

work[j] = unshot[i0][j];
corner[0][j] = unshot[i0][j];
corner[1][j] = unshot[i0][j];}

for (i = i0 + 1; i < rows; ++i) {
/* Propagate radiosity to row i. */

for (j = 0; j < columns; ++j) {
s = i - i0;
tempwork[j] = .5 * work[j];
if (j > 0) tempwork[j] += .5*work[j-1];
receive[i][j] = tempwork[i][j]/s;

/* Adjust tempwork using corner arrays. */
tempwork[j] += .5 * corner[0][j];
if (j > 0) tempwork[j] += .5 * corner[1][j-1];}

/* Update work and corners, to account for transparency. */
for (j = 0; j < columns; ++j) {

transparency = exp( - raylength * kt[i][j] );
work[i][j] = tempwork[i][j] * transparency;
corner[0][j] *= transparency;
if (j > 0) corner[1][j] = corner[1][j-1] * transparency;
else corner[1][j] = 0.; } }

Figure 3. Code fragment for 2-D flux propagation.

The actual implementation contains subscripts indicating the bin direction and starting row,
not shown in the fragment. These let multiple directions and starting rows be propagated together,
permitting multiple bounces per pass, as discussed below.

The arraywork[] stores the flux propagating in the direction bin 6 in figure 2, and is initial-
ized with the unshot flux from rowi0, unshot[i0][] . The arraycorner[0][] , named after
its 3-D use, stores the flux propagating directly downward, used to adjust the left-most pixel in
figure 2, and the arraycorner[1][] stores the flux propagating diagonally, to adjust the right-
most pixel. The constantraylength  is the average length of a ray/pixel intersection segment,
and depends on the bin index. For a square collection of pixels, withrows  = columns  = n, this
code fragment computes the O(n3) interactions of the shooting row with the pixels below it in



time O(n2), instead of the O(n4) time which would be required to accumulate the opacity for each
interaction along a straight path of length O(n). However thisn2 savings factor comes at a cost in
accuracy. The attenuation is not accumulated only along the straight path between a shooting and
receiving pixel, but instead along the many possible propagation paths of downward and diagonal
steps connecting them. Several of these paths are shown in figure 4, filling out a parallelogram.

The opacities at all the pixels in this parallelogram will influence the occlusion of the flux
shot from pixel (0, 0) and received at pixel (i, n). The opacity at pixel (j, k) contributes according
to the number of propagation paths passing through it. Paths belonging to the simple (1/2, 1/2)
scheme are weighted by 1/2n, while those which first gol steps along one of the twocorner
arrays, being divided by 2 only on the last step, are weighted by 1/2n - l + 1. Thus, neglecting the
nonlinearity of the exponential function, the opacity contribution from pixel (j, k), when 0 <j < k,
is

.

The binomial coefficient outside the square brackets represents the number of paths from (j, k) to
(i, n). The three binomial coefficients in the square brackets represent the number of paths from
(0, 0) to (j, k) using, respectively, the (1/2, 1/2) scheme alone,l steps of verticalcorner  propaga-
tion, or l steps of diagonalcorner  propagation.

This opacity contribution is show as a function of the location (j, k), with k increasing down-
wards, forn = 25, andi = 5, 9, 13, and 17, in figures 5a through 5d, respectively.Black denotes
the greatest contributions, and the palest grey is used for any non-zero contribution. Thei = 13
case in figure 5c shows mainly the effect of the binomial (1/2, 1/2) scheme alone. The weight is
concentrated near the straight path, but spread somewhat, blurring the shadows. For the otheri

Figure 4. Paths connecting two pixels.
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shown, the two summations giving the contributions from thecorner  arrays bias the contribu-
tion toward one of thecorner  directions, giving extra weight to shadowing objects in these
directions. I believe these continuously varying shadow errors are less serious than the discontin-
uous illumination errors due to the ray effect.

4. The 3-D case

In the 3-D case, the flux in a direction bin shot from a central voxel spreads out across the
faces of a cubical shell. Figure 6 shows the weights for one of the 24 direction bins in them = 1
case, marked on a surface layer of a 7× 7 × 7 cubical shell. Voxels shared between two adjacent
bins are marked with weight 1/2, and those shared between four adjacent bins are marked with
weight 1/4. Only voxels at the eight cube corners are shared between three adjacent bins, and are
marked with weight 1/3. These corners require a separate correction.

First consider the case where all four corners have weight 1/4. The analogy to the 2-D case
should be clear. The pattern of weights of value 1, 1/2, and 1/4 can easily be constructed from the
smaller pattern of all 1’s in the next shell inwards. Simply divide each value in the smaller pattern
by 4, and add it to the appropriate four direct or diagonal neighbors. The procedure to reconstruct
the all 1’s pattern is a little more complicated, since four whole edges of weight 1/2 must be added
on. The needededge  arrays can be maintained by the 2-D procedure described in the preceding
section. These 2-D iterations require fourcorner  arrays, along the four corners of the direction
bins. The fourcorner  arrays are also used to adjust the corner values of the pattern of weights to
exactly 1, since the addition of theedge  arrays leaves them off by 1/4. The weighted attenuated

(a) (b) (c) (d)

Figure 5. The number of paths passing through each cell.



work  valuess layers beyond the shooting plane are divided bys2 and added into thereceive
array at that layer. Finally, 1/(12s2) times thecorner  array, if any, corresponding to a cube main
diagonal direction is added toreceive  to make the final weight 1/3.

The temporarywork , edge , andcorner  arrays are initialized with then2 unshot  direc-
tion bin flux values in a shooting plane, and propagate their flux to O(n3) receiving elements,
using O(n3) time to produce O(n5) interactions. Thus the total cost for propagating a single bin
direction for then shooting planes is O(n4). This last factor ofn can be reduced to O(log n) by
maintaining these temporary arrays from all the shooting layers, as the receiving layer progresses
through the volume, and recursively consolidating them when the resulting error is small.

The only computational difference between the treatment of the various shooting layers is the
inverse square factor 1/s2. Suppose we take the flux in thework , edge , andcorner  arrays for a
shooting layer at separations from the current receiving layer, and at each entry, put half the flux
into the corresponding entry in the array for the shooting layer at separations - a, and half into the
corresponding entry for separations+ a. These two layers each have their own inverse square fac-
tor, so the effective inverse square factor will become

. (6)

We start witha = 1, and redistribute layers with odd separations into layers with even separations.

1/4 1/2 1/2 1/4

1/2

1/2
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Figure 6. Weights for a layer in a 3D bin.
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Given an error tolerancee, we can find a separations0 beyond which this consolidation results in
a “form factor” error of less thane. This flux consolidation can be continued recursively. At the
ith level of recursion, we redistribute the flux in layers of separations = t0 + 2i+1+ 2ik, for k = 1, 3,
5, ..., onto layers of separationss - a ands + a, with a = 2i. Using equation (6), one can show that
for sufficiently large t0, independent of the volume array siden, the total error introduced is less
thane. The number of layers remaining after this consolidation is O(logn).

It is actually possible to reduce the O(logn) factor to O(1) by consolidating the voxels within
a layer, as well as between adjacent layers, in the manner of [Hanr91] and [Bhat93]. The addi-
tional errors would not be large, because the occlusion effects at large distances become fuzzy, as
shown in figure 5. I have not coded this enhancement, because the practical differences between
O(log n) and O(1) are small.

5. Them > 1 case

For m > 1, the propagation is more complicated. Thework , edge , andcorner  arrays are
maintained only for separationss divisible bym. For cellsi andk with separations less thanm,
more accurate galerkin type geometric form factorsGeomijk are precomputed using Monte-Carlo
integration, in place of the approximation in equation (3). These are used to propagate the flux
from thework , edge , andcorner  arrays at separationsnm to get the receive  flux at cells at
separationsnm + 1 up tonm + m - 1, and to account for the effect of the opacities in these cells on
these arrays. Thework , edge , andcorner  are then updated as discussed above, to propagate
the flux to cells at separation (n + 1)m. I have implemented them = 2 case, with 96 direction bins
in 3-D, and used it to produce all the results in this paper.

6. Scattering of received flux

Once the flux in a direction bin is received in a cell, it must be added to the tally in
through , for use in a final extra bounce towards the viewpoint during rendering. It must also be
scattered into theunshot  flux in each of theM direction bins at the receiving cell, using one row
of theM × M scattering matrixbintobin . This costs timeM, so the total cost per direction bin
is O(n3log n + Mn3). The logn is missing from the second term, since the flux from all shooting
layers is maintained during one pass through the volume, and consolidated intoreceive . A pass
through allM direction bins costs time O(Mn3log n + M2n3).

Note that in equation (5), the product of all the factors after the albedoa is less than 1, so after
k bounces, the flux is decreased by a factor of at leastak. For a fixed albedoa less than 1, the error
can thus be made smaller than a set tolerance after a number of passes that depends only ona, and
not onn, that is, in O(1) passes. For scattering from water droplets in clouds,a is very close to 1,
which would theoretically make the O(1) iteration count very large. In practice, the flux leaks out
at the edges of the cloud, so there is reasonable convergence even whena = 1.

The finite element implementations of Rushmeier set the form factor between a volume ele-



ment and itself to zero [personal communication], because her inverse square approximation to
the form factor had a singularity in this case. However, to approximate dense clouds with large
enough elements for practical computation, it is necessary to account for scattering within a single
element. To do so, I assume exactly forward scattering, a fairly good approximation for water
droplets, in order to calculate the probability of higher order scattering. The multiple scattering
events are then governed by a Poisson distribution [Fell68]. Letl be the average length of the
intersection of a ray in the incoming direction bin with a volume element cube of opacitykt per
unit length, and letλ = ktl. Then the probability that the ray emerges unscattered ise-λ and the
probability of emerging afterb bounces isλbe-λ/b! . At each cell the flux inreceive  from direc-
tion binBi is distributed asunshot  andthrough  flux into all binsBj for that cell by the factors

,

wherea is the albedo, and the powers of thebintobin  matrix are precomputed. The numberB
of terms required depends ona and the range ofkt but is O(1) as a function ofn. For the images in
the results section, I usedB = 12 terms.

This approximation was checked by comparison with the Monte Carlo simulation described
by Hanrahan and Krueger [Hanr93], and agreed well even when the scattering was not forward.
(The box on page 170 of [Hanr93] giving the Monte Carlo simulation has three errors, confirmed
by the authors. The absolute value signs around 2g in the expression for cosj should be removed,
the last row in the vectort should be - cosϕ sin θ, and there is no need to adjust the weight using
the distance to the boundary ifd causes the particle to leave the layer.)

The multiple scattering within one cell speeds up the convergence of the iteration. Another
way to speed up the convergence is to process multiple scattering events at different cells during
one sweep through the volume. The 4m2 shooting bins in one of the six faces of the direction cube
are processed together as the receiving planes sweeps along the corresponding axis direction. The
energy scattered from one direction bin to another in the same cube face can then be processed for
further transmission and scattering during the same sweep. When the scattering is predominately
forward, the scattered flux is likely to end up in a direction in the same cube face.

In order to maintain the O(logn) temporary arrays of sizen2 for each of the O(M) directions
on a cube face, O(Mn2 log n) storage is required. This is asymptotically less than the O(Mn3)
needed for thethrough  andunshot  arrays.

7. Final gathering pass

The final rendering uses an evaluation of the integral form of the transport equation along a
ray through each pixel, as a summation over the ray/element intersection segments. In this final
gathering step, I displaced the volume cells so that their vertices were at the centers of the original
elements, and used interpolated values ofthrough  to give smoother shading. To use the exact

abλb

b!
b 1=

B

∑ e
λ−
bintobin b[i][j]



directionω of the viewing ray, instead of just its direction bin, I computed the integrals

for each binBl once per viewing ray, or else once per volume element, depending on which are
less numerous. This gives a smooth variation of the scattering with the viewing angle.

 Similarly, the unshot  flux is initialized from the attenuated light source flux arrayen ,
using integrals involving the exact direction to the light source. To computeen , many illumina-
tion rays are traced through the volume, enough to cross each volume element multiple times. The
ray/element intersections are processed in the order of light propagation, to attenuate the intensity
by the element opacity, and to add the flux intoen .

Note that the light source flux inen  is not transferred tothrough . The final gathering pass
computes the single scattering contribution using this accurately attenuated direct illumination,
without the shadow blurring caused by the spread out opacity weighting shown in figure 5. For
this single scattering, the phase function is evaluated using the exact directions of both the view-
ing and the direct illumination rays.

8. Cloud model

The geometry of the cloud is determined by the density arraykt . Kajiya and Von Herzen
[Kaj84] computed this density with a meteorological simulation. Instead, for the purposes of test
rendering, I used a variant of the visual cloud model of Gardner [Gard84]. Gardner rendered the
surfaces of ellipsoids with a 3-D transparency texture based on a pseudo-fractal trigonometric
series. I wanted an analogous 3-D density function. I took quadratic polynomials of the form

whose contours are ellipsoids, and used the maximum of several such ellipsoidal functions with
different parameters to define the union of ellipsoidal clouds. I then added on a version of Ken
Perlin’s 1/f noise function [Perl85], to roughen and randomize the edges. Like Gardner, when the
volume function was negative, I letkt  = 0, giving complete transparency. More sophisticated
cloud turbulence models are given in [Sak93] and the references therein.

9. Results

Figure 7 shows a cloud with the sun behind it, rendered with multiple anisotropic scattering.
Note that the cloud edges are brightest near the direction of the sun. Figure 8 shows the same
cloud from a different direction, with the green “grass” background color added for orientation.
For comparison, figure 9 shows the view in figure 8 with only single anisotropic scattering, and
figure 10, the difference of figure 8 minus figure 9, indicates the contribution of the higher order

f ω ω′,( ) dω′
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scattering.

The cloud was defined on a 24× 24 × 18 voxel volume. The initial illumination pass, with
approximately 1000 illumination rays per voxel, took 120 seconds on an SGI 4D/35. The albedo
was .99, and the Henyey-Greenstein phase function hadg = .55, for forward scattering. I used 96
direction bins. Each of the 15 scattering passes took 15 minutes. The final rendering at 500× 384
resolution took 5 minutes per frame. Once the multiple scattering flux inthrough  has been
computed, frames can be rendered from any viewpoint, so the 300× 225 resolution frames on the
videotape took an average of two minutes each.

Figure 11 shows a side view and a top view of the cloud at sunset, using two light sources, an
orange one from near the horizon representing the sun, and another bluish one representing the
sky illumination. These frames took twice as long for the two passes. For the sky illumination, I
used the CIE standard clear sky directional luminance function [CIE37] to initialize theunshot
array on an extra shell of cells on the top and sides of the volume. Figure 12 shows a top view of
another cloud, using an orange point source for the setting sun, and a blue point source for the sky.

10. Future work

This method should be applicable to engineering computations if black body emission is
included in the flux propagation, an easy modification.

Rushmeier [Rush88] and Kajiya [Kaj84] have pointed out that after a number of scattering
events, even a narrow forward phase function becomes more isotropic. This means that the later
scattering passes through the volume could use a smaller number of direction bins, for greater
speed, and still maintain accuracy.

Rushmeier [Rush 87, Rush88] handles surface and volume radiosity in a unified framework. I
currently do not handle surface radiosity, but it should be possible to include surface elements in
this method. In a common engineering application, the only surfaces are on the enclosure of the
participating medium. In this straightforward case, a directional pass through the volume begins
with the unshot flux leaving a shooting surface, as described above for the sky illumination, and
the flux exiting the sides or left over at the end is deposited on the appropriate receiving surface.

Langeret al. [Lang93] have applied the discrete ordinates method to general surface geome-
tries, using “surface nodes” with a bidirectional reflection distribution function at voxels contain-
ing surfaces. They can thus include anisotropic surface reflections, as well as isotropic volume
scattering and absorption. Their flux propagation, like mine, is along a discrete cube of directions,
and could be enhanced by my method to reduce the ray effects.
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